Interstellar Filminin Bilimsel İncelemesi
Christopher Nolan’ın son filmi Interstellar (Yıldızlararası), profesör Kip Thorne’un bilimsel teorilerinden uyarlanmış bir “bilim”kurgu filmi. Bilimkurgudan ziyade filmin bilimsel yönü daha ağır bastı tabii ki.
Pek çok kişi kafasında soru işaretleri ile çıktı sinema salonlarından ancak İTÜ Fizik Mühendisliği bölümünde eğitim veren Doç. Dr. Kerem Cankoçak, filmin temelindeki bilimselliği açıkladı.
Kerem Cankoçak’ın kendi blogunda yazdığı açıklama:
Kasım 2014’te vizyona giren Yıldızlararası (Interstellar) filmi, izleyeciler tarafından büyük beğeni aldı. Ayrıca filmin gerek içeriği, gerekse görsel yapısı, bilime yaptığı katkılarıyla da ses getirdi. Bu yazıda filmin kurgusuna pek dokunmadan, filmin bilimsel arkaplanına göz atmaya çalışacağız.
Filmin bilim danışmanı (ve aynı zamanda yapımcılarından olan) Kip Thorne ünlü bir fizikçi. Filmle aynı tarihte piyasa bir kitap çıkardı: The Science Of Interstellar (Yıldızlararası’nın Bilimi). Alfa Bilim dizisinden basıma hazırlanan bu kitapta filmdeki hemen her bir sahne anlatılmış ve açıklanmış. Yerimiz dar olduğundan kitaptaki önemli yerleri aktaracağımız bu yazıda, mümkün olduğunca filmi anlamamız için gereken fizik alt yapısı verilmeye çalışılacak. Bu yazıdaki görsellerin bir kısmı, ikisi de Alfa Bilim dizisinden çıkmış olan Stephen Hawking’in Zamanın Kısa Tarihi ve John Gribbin’in Çoklu Evrenler kitaplarından diğerleriyse Kip Thorne’un kitabından alınmıştır.
Öncelikle Kip Thorne’dan söz edelim biraz. Amerikan Bilimler Akademisi, Ulusal Bilimler Akademisi, Rus Bilimler Akademisi, Amerikan Felsefe Derneği gibi en önde gelen bilim ve felsefe gruplarına üyeliği bulunan Prof. Thorne’un aldığı birçok ödülden birisi de 2009 yılında aldığı Albert Einstein Madalyası’dır. Prof. Thorne kütleçekim ve astrofizik konularında çalışmış ve California Teknoloji Enstitüsünde 2009 yılına kadar Feynman Teorik Fizik Profesörlüğü unvanını taşımıştır. Genel Görelilik Teorisi üzerine yazdığı yüzlerce makale ve kitapla dünyanın önde gelen araştırmacılarından biri olmuştur.
Kip Thorne’un danışmanlığında kurgulanan film baştan sona bilimsel kuramlara dayanmakta. Fantezi öğeleri yok filmde. Ancak bu bilimsel kuramların hepsi aynı türden değil. Kip Thorne Yıldızlararası’nın Bilimi kitabında bilimsel kuramları üçe ayırıyor: İlki, kanıtlanmış bilimsel gerçekler (görelilik kuramı, kuantum kuramı vb gibi). İkincisi ise henüz kanıtlanmasa bile kanıtlanacağına kesin gözüyle bakılanlar (örneğin henüz Mars’a insan gönderemediysek de yakın bir zamanda göndereceğimiz kesin). Üçüncü tür bilimsel kuramlarsa, diğer bilimsel kuramlarla çelişmeyen ancak henüz kanıtlanmamış kuramlar (sicim kuramları, 5 veya 11 boyutlu uzayzaman vb gibi). Bu kuramların doğrulanacağına dair bir kanıt yok elimizde. Ancak diğer kuramlarla uyum içinde olduklarından bunlara fantezi veya hayal ürünü olarak bakamayız. Belki ilerde yanlışlanacaklar ve yerlerini başka kuramlara bırakacaklar ama şu anda bunları kullanarak evrene ilişkin bazı olguları açıklamaya çalışmakta bir sakınca yok. Sonuçta bu bir film, eğlenceli ve ufuk açıcı olması gerekiyor.
Filmin önemli bir kısmı bu üçüncü türden henüz kanıtlanmamış bilimsel kuramlara dayanıyor. Bunları anlatmadan önce, günümüz fiziğinin temellerini oluşturan kanıtlanmış kuramlara hızlıca bir göz atmamız gerekiyor.
1) Filmde Yer Alan, Kanıtlanmış Bilimsel Kuramlar
Görelilik
Einstein’ın 1905’te ortaya koyduğu özel görelilik kuramının temel postülası, fizik yasalarının serbest hareket eden tüm gözlemciler için hızları ne olursa olsun aynı olması gerektiğidir. Aslında Newton’ın hareket yasalarında da yer olan bu fikir Einstein tarafından Maxwell’in kuramını ve ışık hızını da kapsayacak şekilde genişletildi. Buna göre tüm gözlemciler ne hızla hareket ederlerse etsinler ışık hızını aynı ölçmelidirler. Bu basit fikir, kütle ile enerjinin denkliği (E=mc2) gibi çığır açıcı sonuçlara yol açmıştır. Işık hızının yüzde 90’ıyla yol alan cisim durgun kütlesinin iki katına ulaşır. Cisim asla ışık hızına ulaşamaz, çünkü ulaştığında kütlesinin de sonsuz olması gerekir. Göreliliğin bir diğer önemli sonucu da uzay ve zaman hakkında tamamen yeni bir yaklaşım getirmiş olmasıdır. Eşzamanlılık diye bir kavram yoktur artık. Görelilik kuramı mutlak zaman fikrine son vermektedir. Her gözlemci kendi ölçümüne sahiptir ve farklı gözlemcilerin taşıdığı özdeş saatler aynı sonucu vermek zorunda değildir. Örneğin aynı yaştaki ikizlerden biri bir uzay gemisine binip, ışık hızına yakın bir hızda başka bir gezegene gitse, dünyadaki ikizinden daha genç olarak geri gelir. Bütün bunlar deneylerle kanıtlanmış bilimsel gerçeklerdir.
Uzayda bir kaynaktan belirli bir zamanda yayılan ışık sinyali zaman geçtikçe, boyutu ve konumu kaynağın hızından bağımsız olarak bir ışık küresi biçimindedir. Işık dalgası zaman geçtikçe büyüyen bir çember şeklinde genişler. Bu durumu biri uzay (x-ekseni) diğeri zaman (y-ekseni) olmak üzere iki boyutlu bir grafikte gösterirsek, sıfır noktasında (kaynakta) birleşen ve yukarıya doğru genişleyen bir üçgen elde ederiz. 4-boyutta çizemeyeceğimiz için uzay boyutunu ikiye indirip 3-boyutta çizersek bir koni elde ederiz (Şekil 1).

Koninin üst kısmına olayın gelecekteki ışık konisi adı verilir. Aynı şekilde, ışık sinyalinin şimdiki zamana ulaşmayı başardığı olayların kümesine de geçmişteki ışık konisi denir.
Evrendeki tüm olayları üç sınıfa ayırabiliriz. Şimdiki zamanda bir O olayı olmuş olsun; ışık hızında veya ışık hızının altında bir hızla hareket eden etkiler yoluyla elde edilebilen olaylar, şimdiki zamanın geleceğinde yer alır. Şimdiki zaman sadece gelecekteki olayları etkileyebilir çünkü hiçbir şey ışıktan daha hızlı hareket edemez.
Benzer biçimde geçmişteki etkiler de ışık hızında veya ışık hızının altında hareket ederek şimdiki olaya ulaşması mümkün olan tüm olayların kümesi olarak tanımlanabilir. Şimdiki zamanın geleceği veya geçmişinde yer almayan olaylarsa, O noktasının dışında bir yerde yer alan olaylardır. Bu tür olaylarda olan biten şeyler, ne O’da olanları etkiler ne de O’da olanlardan etkilenir. Örneğin güneşin birden ortadan kalksaydı, bu şimdiki zamanda dünyada olanları etkilemezdi, çünkü güneşin ışığı veya kütleçekim etkisinin dünyaya erişmesi 8 dakika alır. Aslında evrene baktığımızda onu geçmişteki haliyle görüyoruz.
Buraya kadar anlattıklarımız Özel Görelilik kuramının konularıydı. Öte yandan 1915’te Einstein göreliliği kütleçekime de uygulayarak çok daha genel bir kuram elde etti: Genel Görelilik Kuramı. Einstein kütleçekimin diğer kuvvetler gibi bir kuvvet olmadığını, uzayzaman bükülmesinin sonucu olduğunu gösterdi. Gezegenlerin güneş etrafında dönmelerinin nedeni, uzayzamanın içerisindeki kütle ve enerjinin dağılımı nedeniyle bükülmüş olmasıdır. Bu olayı anlamak için jeodezik kavramını incelemeliyiz. Düz uzayda iki nokta arasındaki en kısa yol düz bir çizgidir. Ama kürenin yüzeyi gibi eğri bir uzayda jeodezik en kısa yoldur. Dünyanın yüzeyini düşünürsek, bir geminin okyanusta yol alırken izleyeceği en kısa yol (jeodezik) bir çemberdir (Şekil 2).

Aynı şekilde ışık da uzayzamanda en kısa yolu izler. Dolayısıyla bükülmüş uzayda ışık eğri bir çizgi izleyerek hareket eder. Işık kütleçekim alanları tarafından bükülür.
Einstein’ın bu öngörüsü 1919 yılındaki güneş tutulması sırasında Eddington tarafından sınanmış ve doğrulanmıştır (Şekil 3).

Genel görelilik kuramı ayrıca zamanın kütleçekime göre faklı aktığını da ortaya koyar. Tıpkı birbirine göre farklı hızlarda hareket eden sistemlerde zamanın farklı akması gibi, farklı kütleçekim etkilerine maruz kalan sistemlerde de zaman farklı akar. Örneğin zamanın dünya gibi kütleli bir cismin yakınında daha yavaş akar. Dünyaya uzak bir insan için, olayların gerçekleşmesi için yakındakinden daha uzun zaman gerekir. Kullandığımız konum ölçme sistemleri (GPS’ler), dünya yüzeyinden değişik yüksekliklerdeki saatlerin hızlarındaki farklılık, ve uydulardan gelen sinyaller temelinde işleyen çok hassas navigasyon sistemleriyle çalışmaktadır. Aksi takdirde hesap edilen konum birkaç kilometre yanlış çıkar.
Filmde bu nokta çok önem kazanıyor. Uzay yolculuğundaki mürettebat, çok büyük kütleli bir kara deliğin (Gargantua) yakınında bulunan bir gezegene iniş yaptıklarında, tıpkı uzay gemisiyle ışık hızına yakın bir hızda seyrediyorlarmış gibi zaman yavaşlamasına maruz kalıyorlar. Ancak filmin senaryosu gereği gereken dakikada 7 yıllık zaman farkını yaratmak için Kip Thorne Gargantua’yı neredeyse ışık hızında döndürmek zorunda kalıyor. Bu çok eğlenceli ayrıntıyı Yıldızlararasının Bilimi’nde okuyabilirsiniz.
Kuantum
1900-1930 yılları arası dünyayı algılayışımızı kökten değiştirecek üç kuram ortaya çıktı: özel görelilik (1905), genel görelilik (1915) ve kuantum mekaniği (1900-1926). Kuantum fiziği, cep telefonlarından DNA’ya her şeyin nasıl çalıştığını açıklayabilse de, gerçekte neden böyle olduğunun cevabını veremiyor. Buradaki temel gizem, bir elektronun iki delikten aynı anda geçmesi (diğer bir deyişle Schrödinger’in kedisi) paradoksu. Hangi delikten geçtiğine baktığınızda, elektronlar ekranda girişim deseni oluşturmaz, belli bir duruma ‘çökerler’. Kopenhag yorumuna göre elektron gibi kuantum varlıklarının siz onlara bakmıyorken ne yaptıklarını sormak anlamsızdır. Bu yoruma göre, uzaydaki bir noktada, örneğin iki delikten birinde, gerçek gözlemden bağımsız olarak, elektronun nesnel varlığına verilebilecek herhangi bir anlam yoktur. Elektron sadece biz onu gözlemlediğimizde varlığa kavuşur gibi görünür (Şekil 4).

Çevremizde gördüğümüz her şey, hava, su, ateş ve toprak bir metrenin on milyarda biri büyüklüğündeki atomlardan; atomlar kendilerinden on bin kat küçük çekirdek ile bir milyar kat küçük elektronlardan; çekirdek ise kendinden on kat daha küçük nötron ve protonlardan oluşmaktadır. Atom çekirdeğindeki proton ve nötronlar ise temel parçacık olan kuarklardan meydana gelmektedir. Böylesi küçük varlıkların (mikrokozmos) davranışlarının günlük hayatta (makrokozmos) gözlemlediğimiz cisimlerden farklı olduğunu varsayıyoruz. Çok küçük boyutlarda geçerli olan kuantum mekaniği yasalarına göre, atomaltı parçacıkların konumları ne kadar yüksek hassasiyetle ölçülürse, hızları o kadar az hassasiyetle bilinebilir (Heisenberg belirsizlik ilkesi); hem dalga hem parçacık özellikleri gösterirler; devinim sırasında belli bir yörünge izlemezler; verilen bir durumdan diğerine geçerken gözlenemeyen ara durumlar geçirirler. Özetle, mikrokozmosa uyguladığımız doğa yasalarıyla, makrokozmosu değerlendirirken ortaya attığımız doğa yasaları arasında ontolojik bir kopuş sözkonusu. Çünkü beynimiz makrokozmosta evrimleşti. Çevremizdeki olaylara tepki vermeye yönelik olarak evrimleşen zihnimiz, atom altı dünyasındaki günlük hayatta alışkın olmadığımız olguları yorumlamakta yetersiz kalıyor.
Evrenimiz aslında temelinde kuantize olmuş durumda. Evrendeki her şey (biz dahil) az ya da çok, rastgele dalgalanmakta. Küçük nesnelerdeki dalgalanmaları hassas aletlerle tespit edebiliyoruz. Ama büyük cisimlerde dalgalanma çok çok az olduğundan tespiti mümkün değil. Ancak sözkonusu kütleçekim olduğunda ve kara delik ya da Büyük patlama gibi tekillikler söz konusu olduğunda kuantum dalgalanmaları temel rol oynamakta.

Günlük hayatta yukarıda bahsettiğimiz etkileri gözlemleyemememizin nedeni, deneyimlediğimiz hızların ve kütleçekim alanlarının çok zayıf, boyutların ise çok büyük olmasıdır.
Kara Delikler
Ama karadelikler için durum değişir. Kara deliklerde hem kütleçekim çok büyüktür ve karadelik tekilliklerinde kuantum mekaniğinin önemli etkileri olsa gerektir. Bu yüzden nasıl klasik fizik atomların sonsuz bir yoğunluk derecesinde çökmesi gerektiğini varsayarak kendi çöküşünü öngörüyorsa, klasik genel görelilik de karadeliklerdeki sonsuz yoğunlukta noktalar öngörerek bir anlamda kendi kendini çökertir. Bu nedenle fizikte yeni bir kurama, genel görelilikle kuantumu birleştiren bir kurama ihtiyaç vardır. Böyle bir kuramın sahip olması gereken bir dizi özelliği biliyoruz. Ama önce kara deliklerin özelliklerine göz atalım.
Aslında kara delik fikri genel görelilikten çok daha eskidir. İngiliz fizikçi John Michell 1783 yılında, yeterli ölçüde yoğun ve kütleli bir yıldızın ışığın kaçamayacağı yeğinlikte bir kütleçekim alanına sahip olacağını öngörmüştü.
Bugün bu tür cisimlere kara delik diyoruz, çünkü bu cisimlerden hiç bir şey kaçamaz. Şüphesiz o yıllarda ışığın kütleçekimden nasıl etkilendiğine dair bir fikir yoktu. Ama 1915’te Einstein’ın genel göreliliği ortaya koymasından bu yana kütleçekimin ışığı nasıl etkilediğine ilişkin tutarlı bir kuramımız var.
Bir kara deliğin nasıl oluştuğunu anlayabilmek için öncelikle bir yıldızın yaşam döngüsüne bakmamız gerekir. Bir yıldız, kütleçekim kuvveti nedeniyle çok büyük miktarda hidrojenin kendi üzerine doğru çökmeye başladığında biçimlenir ve atomlar birbirleriyle daha sık ve daha yüksek hızlarda çarpışmaya başlayarak yıldız ısınır. Sonunda öyle sıcak bir hale gelir ki, hidrojen atomları çarpıştıklarında artık birbirlerinden sekmez, bunun yerine helyumu oluşturacak şekilde kaynaşırlar. Füzyon adı verilen bu tepkimede serbest kalan ısı, yıldızın parlamasını sağlar. Bu ısı, gazın basıncını kütleçekim etkisini dengelemeye yeterli olana dek arttırır ve gazın büzüşmesi durur. Tıpkı bir balonu üfleyerek şişirmeye başladığımızda, balonu genişletmeye çalışan içerideki havanın basıncı ile balonu küçültmeye çalışan lastikteki gerilim arasındaki denge gibi, yıldız da bir süre sonra genişlemesini durdurur. Ancak en sonunda yıldız hidrojenini tüketir ve soğumaya, dolayısıyla da büzüşmeye başlar. Bir yıldızın kütlesi Chandrasekhar sınırından azsa, büzüşme durur ve beyaz cüceye dönüşür. Öte yandan Chandrasekhar sınırının üzerinde bir kütleye sahip olan yıldızlar, yakıtlarının sonuna geldiklerinde kara deliğe dönüşebilirler.
Güneş’in kütlesinin 5-10 katı kadar kütlesi olan bir yıldız düşünün. Birkaç milyar yıllık yaşam süresi boyunca hidrojeni helyuma dönüştüren yıldızın merkezinde üretile ısı yıldızı kendi kütleçekimine karşı desteklemeye yeterli basınç yaratacaktır. Ancak yıldız nükleer yakıtını bitirdiğinde, dışa doğru basıncı koruyacak hiçbir şey olmayacak ve yıldız kendi kütleçekimi nedeniyle çökmeye başlayacak, büzüldükçe yüzeydeki kütleçekim alanı güçlenecek ve kaçıp kurtulma hızı artacaktır. Yıldızın yarıçapı otuz kilometrenin altına inene kadar kaçıp kurtulma hızı saniyede 300.000 kilometreye, ışığın hızına kadar artmış olacaktır ve sonra yıldızdan yayılan herhangi bir ışık sonsuzluğa kaçamayacak, kütleçekim alanı tarafından çekilecektir. Böylelikle yıldız kara deliğe dönüşmüş olur. Kara deliğin sınırına olay ufku denir ki, yaklaşık on Güneş kütlesi kadar kütlesi olan bir yıldız için bu sınır yaklaşık otuz kilometredir (Şekil 6).

Roger Penrose ve Stephen Hawking’in çalışmaları, genel görelilik uyarınca bir kara deliğin içerisinde sonsuz bir yoğunluğa ve uzayzaman bükülmesine sahip bir tekilliğin olmak zorunda olduğunu gösterdi. Bu Büyük Patlamadaki duruma benzer tekillikte bilimsel yasaların ve bizim geleceği öngörme becerimiz geçersizleşir. Ancak kara deliğin dışında kalan bir gözlemciye tekillikten ne ışık ne de başka bir sinyal ulaşabildiğinden bu durumdan etkilenmez. Kara deliğin dışında kalan gözlemciler tekillikte oluşan öngörülebilirlik kırılmasının sonuçlarından korunmaktadırlar. Olay ufku, kara deliği çevrelemiş tek yönlü bir filtre gibidir. Cisimler, olay ufkundan geçerek kara deliğe düşebilir, ama hiçbir şey kara delikten çıkıp olay ufkundan geçerek dışarı çıkamaz.
Kara delikler doğrudan gözlemlenemezler ama çevresindeki yıldızları içine çekerken oluşturdukları görüntüler saptanabilir. Kütleçekimsel mercek etkisi adı verilen bu durum da filmde isabetli bir şekilde veriliyor. Einstein’ın Görelilik kuramının ortaya koyduğu kara delik yapısının, gerçeğe en yakın gösterimi bu filmde yapılmış. Hatta bu film için hazırlanan görseller yeni bir bilimsel keşfe bile yol açmış.